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Propagation in Broadside-Coupled
Suspended-Substrate Stripline in E-Plane
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Abstract —The spectral-domain analysis is applied to the derivation of
the propagation characteristics of the even and odd mode, for the broad-
side-coupled suspended-substrate stripline (BCSSS). The characteristic
impedance, based on the current—-power definition, as well as the effective
perntittivity are evaluated. Numerical results are presented illustrating the
effects of several different dimensional parameters. Numerical results
indicate a large spread between even- and odd-mode impedance for thin
substrates (D/A < 0.045) and stripwidths ranging 0.046 < W/B < 047,
suggesting tight coupling. Negligible frequency dependence on odd-mode
impedance is evident, as well as significant frequency effects on even-mode
impedance. Considerable dispersion is shown to be present in the odd mode
for wider strips. Measured results for a low-pass filter and cascaded
transitions are presented.

I. INTRODUCTION

ROPAGATION IN E-plane circuits (planar circuits

suspended in the E-plane of a rectangular waveguide)
have been studied by a number of authors. Dispersion in
finline was first analyzed by Hofmann [1], then followed
by others [2]-[8] using hybrid formulations in either the
spectral or the space domain. Coupled slots in both
unilateral and bilateral finline were studied by Schmidt [10]
and Sharma and Hoefer [9].

Numerical results for broadside-coupled suspended-sub-
strate stripline (BCSSS) configured in the H- and E-planes
were published by Allen and Estes [11] using the static
capacitance method.

In order to accurately design circuits using this structure,
at microwave frequencies, the effect of dispersion should
be considered. At present, data on the dispersion, propa-
gation constant, and impedance for BCSSS is scarce in the
open literature, although Bornemann [12] has examined the
dispersion of the guide wavelength for a similar structure.
However, no published data on even-mode impedance is
available. This paper will provide numerical data for the
effective dielectric constant e, and impedance in the even
and odd propagating modes, taking dispersion into account.
Only the dominant EH, hybrid mode is considered. In
order to demonstrate a practical application of the struc-
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Broadside-coupled suspended-substrate stripline structure
(BCSSS).

Fig. 1.

ture, numerical results are compared to experimental data
for a low-pass filter design.

II. ANALYSIS

The broadside-coupled line structure, shown in Fig. 1,
consists of a thin substrate of relative permittivity e, sus-
pended in the E-plane of a rectangular waveguide with
dimensions 24 and 2B. The thickness of the substrate is
2D and the strips of width 2W are separated by the
substrate.

The spectral-domain method, applied to the analysis of
the structure, is well documented in other publications
[13]-[17]; hence, only a brief outline will be presented. The
Fourier transforms of the current densities on the strip
conductors and the electric fields in the region of the
air-dielectric interface, adjacent to the conductors, are
related by the transform of Green’s functions as follows:

Gll(an9ﬁ’ kO) GlZ(an’lB’kO)j”:Jx(an)jl Ex(an)

G21(an9ﬁsk0) G22(an’B9k0) Jz(an) Ez(an)

1)
where «, is the Fourier transform variable, B is the
propagation constant, and k,, the free-space wavenumber.
J(a,), jz(an), Ex(an), and Ez(an) are the Fourier trans-
forms of the current densities on the strips and the electric
fields adjacent to the strips, respectively.

The current density components on the strips are then
expanded in terms of the appropriate basis functions with
unknown coefficients. Applying Galerkin’s procedure in
the Fourier domain along with Parseval’s theorem, we
obtain a set of algebraic equations in terms of the unknown
coefficients [6], [14]. By setting the determinant of the
characteristic matrix equal to zero and seeking the root of
the resulting equation, a nontrivial solution for the propa-
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gation constant and, hence, guide wavelength can be found
for each frequency.
The characteristic impedance based on the current-
power definition can be computed using [10], [16]
2P

S avg,i
L @)
where I is the longitudinal current on the strips and is
given by

i=e, even mode
i =0, odd mode

0i T b

I= f_ sz(x,D) dx. (3)

The transmitted power P, is evaluated as follows [18]:

P, ——Rff E,H}—E,H})dxdy. (@)

In the formulation of the problem presented above, the

longitudinal and transverse current densities are expanded

-in terms of known basis functions with unknown coeffi-
cients as follows:

J(e)= L () ©

T (a,) = Z i (a,). (6)

The Fourier transforms of the basis funct1ons n,(a,)
and £(a ) are evahiated using the discrete transform
definition. The unknown coefficients ¢; and d, are those
referred to earlier. N and M are the number of expansion
functions.

In order to keep the computation simple and efficient,
we used only a single basis function for the expansion of
each current density component (N = M =1), satisfying
the edge condition at x = + W. The following basis func-
tions were chosen:

= wil__xl, |x|<w 7
m(x) { 0, elsewhere @
N S
L(x)=( Vw2-x2"  |xj<w (®)
0, elsewhere

The expansion functions described by (7) and (8) are
commonly used [6], [9], [15], [17]. For most practical designs,
a single term expansion would sufficé and should yield
sufficiently accurate results [3], [6] with the proper choice
of expansion functions: At the same time, computational
efficiency is not sacrificed, since only a low determinantal

order (m = 2) is used. The propagation in a broadside-cou-
- pled suspended-substrate stripline can be characterized in
terms of two -independent modes of excitation, the even
and the odd mode. The odd mode corresponds to the case
where the current in the two strips flows in opposite
directions, while the even mode describes the situation
where both currents flow in the same direction.

III. NUMERICAL RESULTS

A-computer program was developed which calculates the
guide wavelength and even- and odd-mode impedance at
each frequency. For the analysis, the propagating modes
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Fig. 2. BCSSS structure showing magnetic wall symmetry (even case).
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Fig. 4. Even- and odd-mode dispersion for BCSSS structure. a =25 =
7.112 mm, d = 254 pm, w = 0.3 mm, ¢, = 2.22, —— This paper (SDT),
t=-e=0. --- Bornemann [12] (modal analys1s), t=175 pm, e=05
mm. ..... GPLINES {3], [8] (SDT) t=¢=0.

correspond to the magnetic (even case) and electric (odd
case) wall symmetry at y =0, as shown in Figs. 2 and 3,
respectively.,

The accuracy of the analysis and proper functioning of
the program was verified by computing the e€ven- and
odd-mode effective dielectric constant €. = (A /Ag)? for
a BCSSS placed in a WR-28 shield with the substrate,
0.010-in-thick RT /duroid (¢, = 2.22), placed in the center
of the broad waveguide dimension. Numerical results, ob-
tained for a normalized stripwidth W/B = 0.0844 on sub-
strate thickness D /A= 0.0357 and with finite metallization
and groove depth effects not taken into account, were
compared to those obtained by Bornemann [12] and Jansen
[3], [18] shown in Fig. 4. '

Agreement with Bornemann is better than 2.1 percent
for the odd-mode and 1.2 percent for the even-mode case,
over the frequency range indicated. Analytical data in

/
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Fig. 5. Propagation characteristics. Effective dielectric constant versus
normalized stripwidth W/B, with frequency a parameter. 24 =10.668
mm, 2B = 4318 mm, 2D= 254 pm, €, =222, t=e=0,0046 <W/B
< 0.46.
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Fig. 6. Impedance characteristics. Z,, and Z,, versus normalized
stripwidth W/ B, with frequency a parameter. 24 =10.668 mm, 2B =
4318 mm, 2D =254 pm, €, =222, t=e¢=0, 0.046 < W/B < 0.46,
Z,,. — This paper. © SUPER-COMPAC
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Bornemann’s thesis were obtained using the method of
orthogonal expansion into eigenmodes [20], [21]. Effective
permittivity, computed with the spectral-domain tech-
nique, tend to be on the order of 2 percent larger than
those obtained with the aforementioned analysis [19].
Bornemann’s results include the effect of finite metalliza-
tion thickness and groove depth.

Results obtained in this paper remain valid as long as
the thickness of the strips is small compared with all other
dimensions. At very high frequencies (E-band), the finite
strip thickness would tend to reduce e slightly [4], [19].
Neglecting the effect of finite groove depth for the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, No. 10, OCTOBER 1985

300.0
—

250.0

200.0
]

- 10 GHy
50 QHz

Zoo.Z0e ( Q)
150.0

100.0
= -

. 806
10 GHz

50.0
1

0.0

i T T T T 1
0.00 0.03 0.06 0.09 0.12

D/A

Fig. 7. Impedance characteristics. Z,, and Z,, versus normalized sub-
strate thickness D/A, with frequency a parametér. 2.4 =10.668 mm,
2B =4.318 mm, W/B=02316, 0012 < D/4<0.143, ¢ =222,
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Fig. 8. Low-pass filter in broadside-coupléd suspended-substrate strip-
line (BCSSS). Ly =19.05 nim, L, =15.629 mm, L, =6.842 mm, L=
76.2 mm, b=4318 mm, ¢, =222, ¢, =206 mm (wall thickness of
open-type split-block housing).

frequency range used is not thought to significantly alter
the results [19]. Since the odd-mode case is electrically
identical to the well-known shielded microstrip line, a
comparison was made for e with data obtained from the
program GPLINES [18]. The spectral-domain technique
used in this program [3] uses a four-term expansion with
sinusoidal basis functions which are modified by an edge
condition term so as to closely approximate the strip
current. Agreement with Jansen is within 0.1 percent.

Analytical results computed for a BCSSS structure,
placed in a WR-42 shield and printed on 0.010-in
RT /Duroid 5880 (e, = 2.22), are shown in Figs. 5-7.

Plotted in Fig: 5 is the even- and odd-mode effective
dielectric constant as a function of normalized stripwidth
W/B, for D/4=0.0238, with frequency as a parameter.
Holding W/B fixed, the odd mode €; increases signifi-
cantly with frequency for wider strips (W/B > 0.2). Dis-
persion for this mode is 5.7 percent for W/B = 0.46 and
1.0 percent for W/B = 0.046. When W/ B is increased for a
given frequency, €. rises sharply. In the even mode,
dispersion does not appear to be as significant as in the
odd mode. Less than 2.6-percent dispersion was computed
for wide strips (W/B = 0.46) and 1.4 percent for narrow
strips (W/B = 0.046). Changes in stripwidth do not appear
to affect the effective dielectric constant significantly for
0.15<W/B < 0.46.
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Insertion loss measurement for a BCSSS back-to-back transition,
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Fig. 6 illustrates the behavior of the even-mode imped-
ance as a function of W/B for several frequencies. A
definite frequency dependence is observed for W/B < (.35,
with 11.7-percent change in Z,, for narrow strips and 2
percent for wide strips. The odd-mode impedance is practi-
cally frequency independent, with less than 1.2-percent
impedance change between 10 GHz and 50 GHz over the
complete W/ B range. Odd-mode impedance results in this
paper were compared with those obtained with SUPER-
COMPACT’S@ closed-form expressions for covered mi-
crostrip line, which uses Wheeler’s expressions [22] and
Getsinger’s dispersion model [23]. Agreement is good, with
better than 0.5 percent for wide strips.

The effect of substrate thickness on even- and odd-mode
impedance is illustrated in Fig. 7. As is evident, a large
spread exists betwen Z_, and Z_, for thin substrates with
D/A < 0.045, enabling one to obtain tight coupling. The
results are computed for W/B=02316. As previously
noted, the even-mode impedance is noticeably frequency
dependent, while the odd-mode impedance is not, for thin
substrates (D/A < 0.045). Coupling is adjusted with
stripwidth 2W and substrate thickness 2.D.

IV. EXPERIMENTAL RESULTS

Using the computed results described in this paper, a
low-pass filter was designed in broadside-coupled sus-
pended-substrate stripline, shown in Fig. 8.

In order to achieve the BCSSS planar circuit, an anti-
podal transition between rectangular waveguide and the
filter structure is required. To evaluate the attenuation
associated with such a transition, a back-to-back antipodal
transition was fabricated, as shown in Fig. 9. Also il-
lustrated in this figure is the insertion loss of such transi-
tion using an 0.010-in-thick RT/Duroid 5880 substrate,
placed in a WR-42 split block housing. The design
frequency was 28.5 GHz. The large ripple in S,; was found
to be due to reflections at the antipodal transitions on both
ends of the coupled line section. A computer-controlled
automatic network analyzer was used to obtain the results.
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Fig. 10. Dimensions of low/high impedance sections. /; = 0,933 mm,
1, = 0.540 mm, /, =1.645 mm, [, = 0.606 mm, W}, = 0.4 mm, W = 2.00
mm, Wy =02 mm. .
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Fig. 11. Magnitude of S,; parameters for low-pass filter.

A. Measurements on the Low-Pass Filter

A seven-section low-pass filter, shown in Figs. 8 and 10,
was developed and tested. The low and high odd-mode
impedance sections were chosen to be 14 £ and 70 £,
respectively, in a 47-@ system. Design frequency is 25
GHz. Substrate material is RT/Duroid 5880, 0.010-in-
thick, placed in the center in the E-plane of a WR-42
housing. Design criteria were f,, =25 GHz and in-band
ripple a, = 0.01 dB. Measured S,; and S;; results track the
computed response very well, as shown in Figs. 11 and 12.
The discrepancy between predicted and measured insertion
loss, in Fig. 11, is due to the 2-dB loss in the two transi-
tions (Fig. 9). Some large ripple in S,, outside the pass-
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band is evident, but this may be due to poor performance
of the antipodal transition at higher frequencies.

V. CONCLUSION

Even- and odd-mode impedance and propagation con-
stants for a broadside-coupled suspended-substrate strip-
line have been computed using the spectral-domain tech-
nique. The even-and odd-mode effective dielectric constant
and odd-mode impedance computed in this paper were
found to give good agreement with previously published
results.

Numerical results indicate significant dispersion for wide
strips (W/B > 0.2) and little frequency dependence of the
impedance in the odd mode. In the even mode, frequency
dependence of impedance is noticeable for W/B < 0.35,
while dispersion effects are negligible over most practical
stripwidths (0.1 < W/B < 0.46). The response of a low-pass
filter was found to agree reasonably well with predicted
values of insertion and return loss.
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